I) Jeux finis Jeux
1) Définition

On modélise un jeu (a deux joueurs) par un graphe orienté G, les sommets étant les états possibles du jeu,
et les arcs les transitions.

A partir d’'un sommet initial sq (la position initiale du jeu), les joueurs jouent tour a tour, en se déplacant, a
chaque étape, d’'un sommet s du graphe & un sommet s’ tel que s — s’ soit un arc. Un joueur perd si & son
tour de jouer, le sommet sur lequel il est n’a aucun arc sortant.

Exemple Dans le jeu de Nim, un tas contient un certain nombre de batonnets. Tour a tour le joueur doit
retirer 1, 2 ou 3 batonnets. Le premier joueur a ne pas pouvoir jouer perd.

Les positions du jeu sont décrites par le nombre n € N de batonnets restants, et dans le graphe du jeu
ci-contre, le sommet étiqueté n aau plus trois arcs sortants, versn — 1, n — 2 etn — 3.

Définition Une partie est ou bien une suite finie (si)o<i<n de sommets de G dont le dernier terme est un sommet sans
successeur, ou bien une suite infinie (s )xen telle que Vi, s; — S;41.

Définition On dit qu’un jeu est fini si toute partie est finie.

Remarque Dans le cas d’un jeu avec un nombre fini d’états possibles, le jeu est fini si et seulement si le graphe du jeu est acyclique.

2) Stratégie

Définition Une stratégie est une application f: V — V U{x} telle que pour tout v € V, si v n’a pas de successeur f(v) = X,
et sinon f(v) est 'un des successeurs de v.

Définition Etant données deux stratégies f1, fo et un sommet initial s, la partie associée a (f1, f2, So) est la suite des sommets
obtenue en posant s1 = f1(s0), s2 = f2(s1), s3 = f1(s2), etc, tant que le sommet actuel admet un successeur.

Définition Une stratégie fi est dite gagnante pour un sommet sy pour le premier joueur si quelle que soit la stratégie f2 du
second, la partie associée a (f1, f2, So) est gagnante pour le premier joueur.

Définition Un sommet s est dit
« gagnant (pour le premier joueur) s’il existe une stratégie gagnante.
« perdant si le second joueur a une stratégie gagnante.
« déterminé s’il est gagnant ou perdant.

\

Exercice On considére un disque de rayon 10. Tour a tour, les joueurs doivent placer une piéce de rayon 1 dans le disque, de maniére
disjointe des pieces déja placées. Montrer que le premier joueur a une stratégie gagnante!.

Exemple Dans la version du jeu de Nim décrite plus haut, le premier joueur a une stratégie gagnante si le nombre de batonnets
initiaux n n’est pas congru a 0 modulo 4. En effet, s’il est dans un tel état n, il peut jouer de sorte a laisser un nombre de batonnets n’
congru a 0 modulo 4. Si n’ = 0, son adversaire perd, et sinon, quel que soit son coup, le joueur initial se retrouve a nouveau avec un
nombre de batonnets # 0[4], ce qui lui garantit de toujours pouvoir jouer.

3) Théoréme de Zermelo

Théoréme Tout jeu fini est entierement déterminé (c’est-a-dire que tout sommet est déterminé).

Démonstration. Soit k € K un élément dans aucun de ces deux ensembles. Aucun des successeurs de k n’est dans J j, sinon J; peut
le jouer, et tous les successeurs de k ne peuvent pas étre dans J; i, sinon, J, gagnerait. Donc k£ admet un successeur dans K. Donc il
existe une partie infinie. O

Remarque Si on autorise des matchs nuls, via certains états, ou via des cycles, alors pour chaque sommet, on a 'une des trois alter-
natives suivantes : 1. I'un des deux joueurs a une stratégie gagnante 2. pour chaque joueur, il existe une stratégie qui lui garantit au
moins un match nul. Dans le second cas, si chaque joueur joue sa stratégie, la partie sera nulle.

Exemple Au jeu des échecs on interdit les parties infinies en déclarant une partie nulle si une méme position se répete trois fois. Ce
jeu reléve alors de la remarque précédente, mais on ne sait pas quelle est I’alternative correcte. En pratique, on constate que les blancs
ont un avantage, donc la question est de savoir si les blancs ont une stratégie gagnante, ou si les noirs ont une stratégie qui garantit
au moins un match nul.

Exemple Aux doubles échecs, chaque joueur joue deux coups d’affilée. En raisonnant par I’absurde, montrer que le premier joueur
a une stratégie qui garantit au moins un match nul®.

t. Commencer par placer une piéce au centre, puis penser symétrie . Voler la stratégie du second joueur!



II) Jeux infinis
On considere des jeux infinis a deux joueurs ou, tour a tour, chaque joueur choisit un entier positif. Ils définissent ainsi conjointement
une suite (u,,) € NN,

A toute partie S C NN on associe le jeu Js qui se déroule comme décrit précédemment, et pour lequel la suite u = (u,,),en construite
est gagnante pour le premier joueur si et seulement siu € S.

On s’intéresse au caractére déterminé de ces jeux : 'un des deux joueurs a-t-il une stratégie gagnante ?

1) Premiers exemples
Exemple Pouri, k € N, si S est 'ensemble des suites vérifiant u; = k, le joueur gagnant est celui qui choisit le terme u; (qui dépend
donc de la parité de 7).

Exemple Si S est 'ensemble des suites qui prennent deux fois de suite la méme valeur, le premier joueur est gagnant. Si S est
I’ensemble des suites qui prennent trois fois de suite la méme valeur, le second joueur est gagnant.

Exemple Si S est I'ensemble des suites qui tendent vers I'infini, le second joueur est gagnant, si c’est I'ensemble des suites non
majorées, le premier joueur est gagnant.

Exemple Si S est'ensemble des suites périodiques APCR, le second joueur est gagnant.
Exemple Pour S 'ensemble des suites surjectives le premier joueur gagne, pour les suites injectives, le second joueur gagne.

Exemple Si S est 'ensemble des suites prenant une infinité de fois la méme valeur, le premier joueur est gagnant.

2) Assertions logiques et représentation ensembliste
Les parties S des exemples précédents peuvent étre simplement décrites ou bien
« par des formules logiques,
« par des réunions/intersections dénombrables d’ensembles, 4 partir des ensembles «élémentaires» S; , = {(un,) € NN | u; = k}.
Exemple 3n € N, up, = upy1 < IneN, Ik N, uy =k et upy1 = k< (uy) U U Sk N Spt1.k
neN keN
Exemple u, non majorée < Vm €N, In €N, u, >m&SVYmeN,IneN, Ik >m, u, =k < (uy,) ﬂ U U Sn.k

meNneN k>m

Exemple u, ——— + 00 < Vm € N, Ing € N, Vn > ng, up > m < (uy) ﬂ U ﬂ USnk

n——+0oo
meNnoeENn>ng k>m
Exemple (u,) périodique < 3T € N*, Vn € N, u,, = tpar < (uy) = U ﬂ U Sk O Spt1k-
TEN* neN keN
Exercice Faire de méme pour 1. 'ensemble des suites surjectives/injectives 2. ensemble des suites prenant une infinité de fois la
méme valeur.

Définition On peut décrire la «complexité» d’une formule logique par le nombre d’interversions de quantificateurs nécessaires
pour la définir, ce qui correspond au nombre d’interversions de N et U dans la définition ensembliste.

Remarque 1l est difficile de concevoir des formules utiles qui aient beaucoup d’interversions. La propriété u,, — +oc a 3 interversions,
la propriété «(u,) converge» en aurait 4 (3¢ € R, u,, — {), mais on peut en fait I'écrire avec 3 interversions (cf «)).
3) Des jeux plus compliqués
a) Des graphes particuliers sur N

On interpréte la suite (u,,) construite comme la donnée d’arétes dans un graphe non orienté dont 'ensemble des sommets est N. Si
u; = k, on met une aréte du sommet ¢ au sommet k. On notera ¢ —,, k la propriété u, = k.

On va prendre pour S I'ensemble des suites pour lesquelles le graphe est connexe.

Proposition Pour un graphe G ainsi construit, deux sommets x,y € N sont dans la méme composante connexe si et seulement
si x et y ont un «descendant commun», au sens ou il existe deux entiers n, m et des suites * = xg —y, T1 —y T2 ... —>y Tp €t
Y=1Y0 —u Y1 —u Y2 ... —>u Ym telles que z, = Y.

Démonstration. < : clair

= : On procéde par récurrence sur la longueur ¢ du plus court chemin de z a y.

Le cas ¢ = 0 est trivial. Si £ = 1, alors il y a une aréte entre x et y, donc ou bien z —,, y ou bien y —,, x. d’out le résultat.

Supposons le résultat correct pour £ € N donné. Soient z, y avec un plus court chemin de longueur ¢ entre les deux. Si la premiére
étape de ce chemin de x & y commence par une aréte * —, ', en appliquant ’hypothése de récurrence a x’ et y, le descendant
commun 4 z’ et y est un descendant commun a x et y.

Sinon, c’est une aréte ' —,, . On sait que 2’ et y ont un descendant commun, mais tout descendant de «’ est ou bien z’ lui-méme,
ou bien un descendant de x, donc x et y ont un descendant commun. O




(n)

Notons u; 0

la suite définie par u, (n+1)

=dietVn e N, u,; =U, -

Grace a la proposition précédente, on peut écrire  (u,) € S < Vz € N, ¥y € N, In e N, Im e N, u{™) = uém).
(n)

Pour chaque n, m € N fixés, 'assertion u,, ° = 2 s’écrit comme Iz, 3xs,...,ITp_1, Uy =T1 €t Uy, =22€t ... et u,, |, = 2.

L’ensemble S est donc défini par une formule logique avec un nombre de quantificateurs non borné (mais un nombre fini d’interver-
sions de quantificateurs néanmoins).

Exercice Lequel des deux joueurs a une stratégie gagnante ? %

b) Des séries convergentes

On peut interpréter une suite (u,,) € NN comme une suite (v,,) € {0,1}N en comptant toute valeur u; > 1 comme valant 1.
On va supposer que la suite construite commence a I'indice 1 et qu’elle est & valeurs dans {£1}. On la notera (e, )n>1.

€k

On note S}, I'ensemble des suites (&,,),,>1 pour lesquelles la suite des sommes partielles ( o 2 converge.

) neN*
«) Aparté : Traduire la convergence d’une suite

Si (u,) € RN, la propriété «(u,) converge» s’écrit 3¢ € R, Ve > 0, Ing € N, Vn > ng, |u, — €| < . Cela donne la représentation

ensembliste U ﬂ U m luy, — ] <e.

LeERe>0ngENN>ng
Cette représentation ensembliste différe des représentations que ’on obtenait précédemment en ce que les deux premieres réunion et
intersection sont non dénombrables.

Pour rester dans le contexte de la partie 4), on peut s’efforcer de les rendre dénombrables :
1. La quantification Ve > 0, ..., |u, — £| < ¢ peut étre remplacée par Vm € N*, ... |u, — ¢ < 2

2. La quantification 3¢ € R est plus subtile et nécessite d’utiliser le critére de convergence de Cauchy (cf Feuille culturelle sur les
suites) : une suite (u,) € RN converge si et seulement si Ve > 0, Ing € N, Vp, g > no, |up — uy| < e.

On peut donc finalement écrire :
" 1
(uy,) converge < Vm € N*, Ing € N, Vp, ¢ > ng, |up, — ug| < —,
m

ce qui correspond a des réunions/intersections dénombrables d’ensembles «élémentaires» de la forme |u, — uy| < -

5) Retour a Sj.

n P

€k 1

Ona (gp)n>1 € Sp < g ?k converge < Vm € N*, Ing € N, Vp > ¢ > ny, E f‘ -
k=1 neN* k=q

Pour p, g, m fixé, la condition ‘ S . E1 < % peut s’écrire une réunion finie d’intersections d’ensembles Sy, ,,, pour k € [g, p] et
u € {£1}.

Exercice Quel joueur a une stratégie gagnante ? I

(—ple/2l . .
~——— si k est impair
Exercice % On note Sy I'ensemble des suites pour lesquelles (3>_7_; e ux) tend vers 0, ou uy, = (_1y(k/2] P

4k

neN* . .
si k est pair

Montrer que le premier joueur (qui joue aux indices impairs) a une stratégie gagnante.
c) Des graphes arbitraires sur N

Considérons la bijection § de N dans A~ = {(4,j) € N* | j < i}, définie par 'énumération :
(1,0),(2,0),(2,1),(3,0),(3,1),(3,2), (4,0),(4,1), ...

A laide de cette bijection, on peut interpréter toute suite de {0, 1}N comme une suite de {0, 1}2 ", qui elle méme peut s’interpréter
comme la donnée d’un graphe non orienté sans boucles sur I’ensemble des sommets N.

En pratique les joueurs choisissent tour a tour soit 0 soit 1 et ces choix correspondent a I'existence d’'une aréte dans le graphe. On
choisit d’abord si on relie 1 et O par une aréte, puis 2 et 0, puis 2 et 1, puis 3 et 0, etc.

Pour i > j, onnote ¢ — j si us-1((;,;)) = 1. Pour 4,5 € N,onnote i <+ j sii > j et us-1((; jy) = Loui < jetus-1(;q) =1

Chemins
On note Sy I'ensemble des suites pour lesquelles le graphe contient des chemins arbitrairement longs et S, '’ensemble des suites pour
lesquelles le graphe contient un chemin de longueur infinie.

L’existence d’un chemin de longueur & s’écrit S, = J
arbitrairement longs est Sy = J, e+ Sk-

or<. < (x1 <> x2 et X2 4> w3 et ... et Tp_1 ¢ x)). L'existence de chemins

Propriété L’ensemble S, ne peut pas se construire a ’aide de réunions et d’intersections dénombrables des ensembles élémen-
taires S, k.
]

Exercice Montrer que le premier joueur a une stratégie gagnante pour S..

§. Le second joueur gagne, en donnant un successeur pair a chaque sommet pair. 9. le premier joueur gagne, en jouant n’importe quel premier coup, et toujours le
signe opposé du coup du joueur précédent




Cliques

Exemple L’ensemble des suites pour lesquelles le graphe construit contient un triangle est S = U (z —yetyrzetz e x)
z,y,z€N
Exercice Lequel des deux joueurs a une stratégie gagnante ?

On dit que £ C N forme une clique dans le graphe si Vi, j € K, i # j =i < j.
Enfin, on peut considérer Si: 'ensemble des suites pour lesquelles le graphe admet une clique infinie.
Exercice % Existe-t-il une stratégie gagnante pour le jeu associé a Sk ?

4) Théoréeme de détermination de Borel et axiome de détermination

Tribu des boréliens

Définition On note B C P(NN) la tribu des boréliens, définie comme la plus petite collection de parties de NN telle que
+VneN,VkeN, S, €B.
«VAeB, AeB

« Si (A;)ieN est une suite d’ensembles de B, alors | J

AiEB.

i€N

Remarque La stabilité par réunion dénombrable et par passage au complémentaire impliquent la stabilité par intersection dénom-

brable : si (A;);en € BN alors Nien Ai € B.

Remarque Autrement dit, les boréliens sont tous les ensembles que I'on peut construire & partir des S, 5, a aide de réunions et
d’intersections dénombrables.

Remarque On s’intéresse habituellement plutot aux boréliens R, qui sont définis en remplacant les S,, , par les intervalles de R.
«Complexité» des ensembles boréliens

Les ensembles décrits dans les parties précédentes sont tous des boréliens (sauf S.). On s’est nécessairement restreint a des ensembles
qui étaient «compréhensibles», il peut exister des boréliens qui font intervenir une infinité d’interversions de quantificateurs.

La complexité des boréliens est néanmoins contrélée par le théoréme d’induction transfinie suivant

Théoréme Soit P(S) une propriété qui dépend d’un ensemble S C NN. Si P est vérifiée par tous les S,, i, si P(A) = P(A) et
siVi e N, P(4;) = P( Uien Ai) , alors P est vérifiée par tous les boréliens.

Démonstration. Soit C 'ensemble des ensembles S tels que P(S) soit vérifiée. Alors C contient les Sy, i, est stable par complémentaire,
et est stable par réunion dénombrable, donc, par minimalité de BB, C contient tous les boréliens. O

Théoréme de Borel

Théoréme Soit S C NN un borélien. Alors le jeu .Jg est déterminé.

Démonstration. Non trivial. O
Remarque Ce théoréme ne s’applique pas a I’ensemble Sy, qui est pourtant bien déterminé.
Axiome de détermination

L’axiome de détermination (AD) est un axiome, selon lequel pour toute partie A C NN le jeu .J4 est déterminé.
Il a entre autres la conséquence sympathique suivante, qui permet de définir la «longueur» de toute partie de R.

~

Théoréme Il existe une fonction A: P(R) — Ry U {400}, appelée mesure de Lebesgue vérifiant
« pour tout a < b, A([a, b]) = A(Ja,b[) = b — a.
« si A, B C R sont disjointes A(A U B) = A\(A) + A(B).

- plus généralement, si (A, )en est une famille de parties deux a deux disjointes, A (U, cny An) = > nen AM(An).

\.

Remarque On peut de méme définir une application «aire» sur toutes les parties de R2.

Propriété L’axiome de détermination est incompatible avec ’axiome du choix.

\.

Démonstration. Cf la partie suivante. O

Remarque Ce résultat est incompatible avec axiome du choix. Sous I'axiome du choix, la mesure de Lebesgue n’est pas définie sur
toutes les parties de R.




III) Construction d’un jeu non déterminé

On va partiellement décrire comment ’axiome du choix implique P'existence d’un jeu non déterminé.

L’hypothése du continu

Pour simplifier les notions en jeu, on supposera ’hypothése du continu suivante, qui stipule que tout ensemble infini «strictement
plus petit» que R est dénombrable.

[ Axiome Soit A un ensemble. S’il existe une surjection R — A, alors A est soit fini, soit dénombrable, soit en bijection avec R. ]

Remarque Cette hypothése est indépendante de la théorie ZFC, c’est-a-dire qu’il n’est ni possible de la démontrer, ni de 'infirmer.

L’ensemble des stratégies est équipotent a R

On note S 'ensemble des stratégies possibles et NI\ 'ensemble des suites finies.

On peut voir une stratégie comme une application qui a toute suite finie de coups (les coups précédents) associe un entier (le coup
que l'on va jouer).

Proposition N est dénombrable.

Démonstration. Notons N} 'ensemble des suites finies d’au plus & termes, dont tous les termes sont < k. Alors A}, est fini, et N) =
N, donc NN est dénombrable, comme réunion dénombrable de parties finies. O
kEN 0 p

Comme on a identifié S a 'ensemble des fonctions N} — N, la proposition précédente justifie que S est en bijection avec I'ensemble
des fonctions N — N, c’est-a-dire I’ensemble des suites.

On rappelle le théoréme de Cantor-Bernstein :

~

Théoréme S’il existe une injection A — B et une injection B — A, il existe une bijection A — B.

Proposition NN est en bijection avec R.

\.

Démonstration. L application Ry — NN qui 4 un réel associe la suite constituée de sa partie entiére, suivie de la suite des termes de
son développement décimal est injective.

Réciproquement, & une suite d’entiers (i, )nen, on peut associer le réel 2z € [0, 1] dont le développement décimal est constitué de u
chiffres 1, suivis d’un 0, suivis de u; chiffres 1, suivis d’un 0, etc. Cette association est clairement injective. O

L’axiome du choix permet de bien ordonner R

On rappelle qu’un bon ordre est une relation d’ordre totale pour laquelle tout ensemble non vide admet un minimum, ou encore pour
laquelle il n’existe pas de suite infinie strictement décroissante.

Le résultat suivant est une conséquence quelque peu douteuse de 'axiome du choix (et de ’hypothése du continu).

Théoréme Il existe un bon ordre sur R tel que pour tout z € R 'ensemble {y € R | y =< z} soit au plus dénombrable.

Démonstration. Cf feuille culturelle sur les ordinaux. O

Remarque L’existence d’un bon ordre sur R nécessite ’axiome du choix. Il n’est pas possible d’en construire un de maniére «explicite».

Remarque Sans I'hypothése du continu, il faut remplacer «dénombrable» par «de cardinal strictement plus petit que R».

Parties cohérentes avec une stratégie

Etant donné une stratégie o, on dit qu'une suite (u,)nen (C’est-a-dire une partie du jeu) est A-cohérente avec o s’il est possible
d’obtenir cette partie si le premier joueur suit la stratégie o. On dit qu’elle est B-cohérente avec o si on peut 'obtenir si le second
joueur suit la stratégie o.

Remarque Etant donné une stratégie o, 'ensemble des parties B-cohérentes avec o est en bijection avec NN, puisque le choix d’une
telle partie est équivalent a la suite des coups du joueur A. En particulier, 'ensemble des parties B-cohérentes avec o est non dénom-

brable.

Munissons 'ensemble S des stratégies d’un bon ordre pour lequel Vo € S, {7 | 7 < o} soit au plus dénombrable. On munit également
I’ensemble des suites, NN, d’un bon ordre.

On souhaite construire un jeu non déterminé. Pour cela, on va montrer 'existence de deux ensembles disjoints A, B tels que pour tout
o € S, A contienne une suite B-cohérente avec o et B contienne une suite A-cohérente avec o.

(Si ces deux parties existent, alors aucune stratégie o n’est gagnante pour le jeu associé a A)



Construction de A, B par récursion transfinie

On va construire ces deux parties A, B petit a petit en partant de Ag = By = () et en considérant les stratégies une a une, suivant le
bon ordre.

Lemme Soit o une stratégie. On suppose qu’il existe deux familles (A, ); <o, (B;)r<o de parties de NN indexées par les stra-
tégies T < o vérifiant

() Vr <o, A, NB, =0
(ii) pour tout 7, les parties A, et B, sont au plus dénombrables
(iii) les deux familles sont croissantes pour l'inclusion: 7 < 7/ = A, C A,/

(iv) pour tout 7, A, contient une suite B-cohérente avec 7, et B, une suite A-cohérente avec 7.

Ar et By = ., Br sont dénombrables.

Si A} contient une partie B-cohérente avec o, on pose A, = A}. Sinon, comme B est dénombrable et que I’ensemble des
parties B-cohérentes avec o ne I’est pas on choisit une suite v B-cohérente avec o, et on pose A, = A% U {u}. Pour rendre ce
choix déterministe, on choisit u comme la plus petite suite n’appartenant pas a B, pour le bon ordre sur NN choisi initialement.

Comme {7 | 7 < 0} est dénombrable, les parties A% = J._,

De méme on définit B, en ajoutant a B, si nécessaire, une suite A-cohérente avec o qui n’appartient pas a A,.

Proposition 1l existe un unique couple de familles (A, )ycs, (By)ocs vérifiant les propriétés (i) a (iv) ainsi que

(v) pour tout 0 € S, A, et B, sont obtenus en appliquant la construction du lemme précédent

Démonstration. Unicité : Soient (A, )scs, (By)oes et (AL )ves, (B )secs deux telles suites. On considére 'ensemble des o € S pour
lesquels (A,, B,) # (AL, B.).

D’apres la propriété de bon ordre, si cet ensemble était non vide, il admettrait un plus petit élément o(, ce qui ameénerait a une
contradiction.

Existence : On considére 'ensemble des o pour lesquels il n’existe pas de telles familles (A;); <o, (Br)r<o. A nouveau, cet ensemble,

sl est non vide, admet un plus petit élément, que I'on note 0. D’aprés 'unicité, il existe des familles (A, ) <, et (B;),<, qui vérifient
les hypothéses du lemme, et qui permettent de définir A, et B,, contredisant ’hypotheése. O

Conclusion

[ Proposition 1l existe un jeu non déterminé.

Démonstration. Notons A = |J, .5 Ay et B = J,cs Bo. Alors A et B sont disjoints, et le jeu associé a A est non déterminé. O




	Jeux finis
	Définition
	Stratégie
	Théorème de Zermelo

	Jeux infinis
	Premiers exemples
	Assertions logiques et représentation ensembliste
	Des jeux plus compliqués
	Des graphes particuliers sur N
	Des séries convergentes
	Des graphes arbitraires sur N

	 Théorème de détermination de Borel et axiome de détermination

	Construction d'un jeu non déterminé

