
JeuxI) Jeux finis
1) Définition

On modélise un jeu (à deux joueurs) par un graphe orienté G, les sommets étant les états possibles du jeu,
et les arcs les transitions.
À partir d’un sommet initial s0 (la position initiale du jeu), les joueurs jouent tour à tour, en se déplaçant, à
chaque étape, d’un sommet s du graphe à un sommet s′ tel que s → s′ soit un arc. Un joueur perd si à son
tour de jouer, le sommet sur lequel il est n’a aucun arc sortant.
Exemple Dans le jeu de Nim, un tas contient un certain nombre de bâtonnets. Tour à tour le joueur doit
retirer 1, 2 ou 3 bâtonnets. Le premier joueur à ne pas pouvoir jouer perd.
Les positions du jeu sont décrites par le nombre n ∈ N de bâtonnets restants, et dans le graphe du jeu
ci-contre, le sommet étiqueté n a au plus trois arcs sortants, vers n − 1, n − 2 et n − 3. 0
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Définition Une partie est ou bien une suite finie (sk)0≤k≤n de sommets de G dont le dernier terme est un sommet sans
successeur, ou bien une suite infinie (sk)k∈N telle que ∀i, si → si+1.

Définition On dit qu’un jeu est fini si toute partie est finie.

Remarque Dans le cas d’un jeu avec un nombre fini d’états possibles, le jeu est fini si et seulement si le graphe du jeu est acyclique.

2) Stratégie

Définition Une stratégie est une application f : V → V ∪ {×} telle que pour tout v ∈ V , si v n’a pas de successeur f(v) = ×,
et sinon f(v) est l’un des successeurs de v.

Définition Étant données deux stratégies f1, f2 et un sommet initial s0, la partie associée à (f1, f2, s0) est la suite des sommets
obtenue en posant s1 = f1(s0), s2 = f2(s1), s3 = f1(s2), etc, tant que le sommet actuel admet un successeur.

Définition Une stratégie f1 est dite gagnante pour un sommet s0 pour le premier joueur si quelle que soit la stratégie f2 du
second, la partie associée à (f1, f2, s0) est gagnante pour le premier joueur.

Définition Un sommet s0 est dit
• gagnant (pour le premier joueur) s’il existe une stratégie gagnante.
• perdant si le second joueur a une stratégie gagnante.
• déterminé s’il est gagnant ou perdant.

Exercice On considère un disque de rayon 10. Tour à tour, les joueurs doivent placer une pièce de rayon 1 dans le disque, de manière
disjointe des pièces déjà placées. Montrer que le premier joueur a une stratégie gagnante†.

Exemple Dans la version du jeu de Nim décrite plus haut, le premier joueur a une stratégie gagnante si le nombre de bâtonnets
initiaux n n’est pas congru à 0 modulo 4. En effet, s’il est dans un tel état n, il peut jouer de sorte à laisser un nombre de bâtonnets n′

congru à 0 modulo 4. Si n′ = 0, son adversaire perd, et sinon, quel que soit son coup, le joueur initial se retrouve à nouveau avec un
nombre de bâtonnets ̸≡ 0[4], ce qui lui garantit de toujours pouvoir jouer.

3) Théorème de Zermelo

Théorème Tout jeu fini est entièrement déterminé (c’est-à-dire que tout sommet est déterminé).

Démonstration. Soit k ∈ K un élément dans aucun de ces deux ensembles. Aucun des successeurs de k n’est dans J2,k , sinon J1 peut
le jouer, et tous les successeurs de k ne peuvent pas être dans J1,k , sinon, J2 gagnerait. Donc k admet un successeur dans K . Donc il
existe une partie infinie.

Remarque Si on autorise des matchs nuls, via certains états, ou via des cycles, alors pour chaque sommet, on a l’une des trois alter-
natives suivantes : 1. l’un des deux joueurs a une stratégie gagnante 2. pour chaque joueur, il existe une stratégie qui lui garantit au
moins un match nul. Dans le second cas, si chaque joueur joue sa stratégie, la partie sera nulle.
Exemple Au jeu des échecs on interdit les parties infinies en déclarant une partie nulle si une même position se répète trois fois. Ce
jeu relève alors de la remarque précédente, mais on ne sait pas quelle est l’alternative correcte. En pratique, on constate que les blancs
ont un avantage, donc la question est de savoir si les blancs ont une stratégie gagnante, ou si les noirs ont une stratégie qui garantit
au moins un match nul.
Exemple Aux doubles échecs, chaque joueur joue deux coups d’affilée. En raisonnant par l’absurde, montrer que le premier joueur
a une stratégie qui garantit au moins un match nul‡.

†. Commencer par placer une pièce au centre, puis penser symétrie ‡. Voler la stratégie du second joueur !



II) Jeux infinis
On considère des jeux infinis à deux joueurs où, tour à tour, chaque joueur choisit un entier positif. Ils définissent ainsi conjointement
une suite (un) ∈ NN.
À toute partie S ⊂ NN on associe le jeu JS qui se déroule comme décrit précédemment, et pour lequel la suite u = (un)n∈N construite
est gagnante pour le premier joueur si et seulement si u ∈ S.
On s’intéresse au caractère déterminé de ces jeux : l’un des deux joueurs a-t-il une stratégie gagnante?

1) Premiers exemples
Exemple Pour i, k ∈ N, si S est l’ensemble des suites vérifiant ui = k, le joueur gagnant est celui qui choisit le terme ui (qui dépend
donc de la parité de i).
Exemple Si S est l’ensemble des suites qui prennent deux fois de suite la même valeur, le premier joueur est gagnant. Si S est
l’ensemble des suites qui prennent trois fois de suite la même valeur, le second joueur est gagnant.
Exemple Si S est l’ensemble des suites qui tendent vers l’infini, le second joueur est gagnant, si c’est l’ensemble des suites non
majorées, le premier joueur est gagnant.
Exemple Si S est l’ensemble des suites périodiques APCR, le second joueur est gagnant.
Exemple Pour S l’ensemble des suites surjectives le premier joueur gagne, pour les suites injectives, le second joueur gagne.
Exemple Si S est l’ensemble des suites prenant une infinité de fois la même valeur, le premier joueur est gagnant.

2) Assertions logiques et représentation ensembliste
Les parties S des exemples précédents peuvent être simplement décrites ou bien

• par des formules logiques,
• par des réunions/intersections dénombrables d’ensembles, à partir des ensembles «élémentaires» Si,k = {(un) ∈ NN | ui = k}.

Exemple ∃n ∈ N, un = un+1 ⇔ ∃n ∈ N, ∃k ∈ N, un = k et un+1 = k ⇔ (un) ∈
⋃

n∈N

⋃
k∈N

Sn,k ∩ Sn+1,k

Exemple un non majorée ⇔ ∀m ∈ N, ∃n ∈ N, un ≥ m ⇔ ∀m ∈ N, ∃n ∈ N, ∃k ≥ m, un = k ⇔ (un) ∈
⋂

m∈N

⋃
n∈N

⋃
k≥m

Sn,k

Exemple un −−−−−−→
n→+∞ + ∞ ⇔ ∀m ∈ N, ∃n0 ∈ N, ∀n ≥ n0, un ≥ m ⇔ (un) ∈

⋂
m∈N

⋃
n0∈N

⋂
n≥n0

⋃
k≥m

Sn,k

Exemple (un) périodique ⇔ ∃T ∈ N∗, ∀n ∈ N, un = un+T ⇔ (un) =
⋃

T ∈N∗

⋂
n∈N

⋃
k∈N

Sn,k ∩ Sn+T,k .

Exercice Faire de même pour 1. l’ensemble des suites surjectives/injectives 2. l’ensemble des suites prenant une infinité de fois la
même valeur.

Définition On peut décrire la «complexité» d’une formule logique par le nombre d’interversions de quantificateurs nécessaires
pour la définir, ce qui correspond au nombre d’interversions de ∩ et ∪ dans la définition ensembliste.

Remarque Il est difficile de concevoir des formules utiles qui aient beaucoup d’interversions. La propriété un → +∞ a 3 interversions,
la propriété «(un) converge» en aurait 4 (∃ℓ ∈ R, un → ℓ), mais on peut en fait l’écrire avec 3 interversions (cf α)).

3) Des jeux plus compliqués
a) Des graphes particuliers sur N

On interprète la suite (un) construite comme la donnée d’arêtes dans un graphe non orienté dont l’ensemble des sommets est N. Si
ui = k, on met une arête du sommet i au sommet k. On notera i →u k la propriété ui = k.
On va prendre pour S l’ensemble des suites pour lesquelles le graphe est connexe.

Proposition Pour un graphe G ainsi construit, deux sommets x, y ∈ N sont dans la même composante connexe si et seulement
si x et y ont un «descendant commun», au sens où il existe deux entiers n, m et des suites x = x0 →u x1 →u x2 . . . →u xn et
y = y0 →u y1 →u y2 . . . →u ym telles que xn = ym.

Démonstration. ⇐ : clair
⇒ : On procède par récurrence sur la longueur ℓ du plus court chemin de x à y.
Le cas ℓ = 0 est trivial. Si ℓ = 1, alors il y a une arête entre x et y, donc ou bien x →u y ou bien y →u x. d’où le résultat.
Supposons le résultat correct pour ℓ ∈ N donné. Soient x, y avec un plus court chemin de longueur ℓ entre les deux. Si la première
étape de ce chemin de x à y commence par une arête x →u x′, en appliquant l’hypothèse de récurrence à x′ et y, le descendant
commun à x′ et y est un descendant commun à x et y.
Sinon, c’est une arête x′ →u x. On sait que x′ et y ont un descendant commun, mais tout descendant de x′ est ou bien x′ lui-même,
ou bien un descendant de x, donc x et y ont un descendant commun.
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Notons u
(n)
i la suite définie par u

(0)
i = i et ∀n ∈ N, u

(n+1)
i = u

u
(n)
i

.

Grâce à la proposition précédente, on peut écrire (un) ∈ S ⇔ ∀x ∈ N, ∀y ∈ N, ∃n ∈ N, ∃m ∈ N, u(n)
x = u(m)

y .
Pour chaque n, m ∈ N fixés, l’assertion u

(n)
x = z s’écrit comme ∃x1, ∃x2, . . . , ∃xn−1, ux = x1 et ux1 = x2 et . . . et uxn−1 = z.

L’ensemble S est donc défini par une formule logique avec un nombre de quantificateurs non borné (mais un nombre fini d’interver-
sions de quantificateurs néanmoins).
Exercice Lequel des deux joueurs a une stratégie gagnante? §

b) Des séries convergentes

On peut interpréter une suite (un) ∈ NN comme une suite (vn) ∈ {0, 1}N en comptant toute valeur uk ≥ 1 comme valant 1.
On va supposer que la suite construite commence à l’indice 1 et qu’elle est à valeurs dans {±1}. On la notera (εn)n≥1.
On note Sh l’ensemble des suites (εn)n≥1 pour lesquelles la suite des sommes partielles

(∑n
k=1

εk

k

)
n∈N∗ converge.

α) Aparté : Traduire la convergence d’une suite

Si (un) ∈ RN, la propriété «(un) converge» s’écrit ∃ℓ ∈ R, ∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, |un − ℓ| ≤ ε. Cela donne la représentation
ensembliste

⋃
ℓ∈R

⋂
ε>0

⋃
n0∈N

⋂
n≥n0

|un − ℓ| ≤ ε.

Cette représentation ensembliste diffère des représentations que l’on obtenait précédemment en ce que les deux premières réunion et
intersection sont non dénombrables.
Pour rester dans le contexte de la partie 4), on peut s’efforcer de les rendre dénombrables :

1. La quantification ∀ε > 0, . . . , |un − ℓ| ≤ ε peut être remplacée par ∀m ∈ N∗, . . . , |un − ℓ| ≤ 1
m .

2. La quantification ∃ℓ ∈ R est plus subtile et nécessite d’utiliser le critère de convergence de Cauchy (cf Feuille culturelle sur les
suites) : une suite (un) ∈ RN converge si et seulement si ∀ε > 0, ∃n0 ∈ N, ∀p, q ≥ n0, |up − uq| ≤ ε.

On peut donc finalement écrire :

(un) converge ⇔ ∀m ∈ N∗, ∃n0 ∈ N, ∀p, q ≥ n0, |up − uq| ≤ 1
m

,

ce qui correspond à des réunions/intersections dénombrables d’ensembles «élémentaires» de la forme |up − uq| ≤ 1
m .

β) Retour à Sh.

On a (εn)n≥1 ∈ Sh ⇔

(
n∑

k=1

εk

k

)
n∈N∗

converge ⇔ ∀m ∈ N∗, ∃n0 ∈ N, ∀p ≥ q ≥ n0,
∣∣∣ p∑

k=q

εk

k

∣∣∣ ≤ 1
m

Pour p, q, m fixé, la condition
∣∣∣∑p

k=q
εk

k

∣∣∣ ≤ 1
m peut s’écrire une réunion finie d’intersections d’ensembles Sk,u, pour k ∈ [[q, p]] et

u ∈ {±1}.
Exercice Quel joueur a une stratégie gagnante? ¶

Exercice ⋆ On note S0 l’ensemble des suites pour lesquelles (
∑n

k=1 εkuk)
n∈N∗ tend vers 0, où uk =

{
(−1)⌊k/2⌋

k si k est impair
(−1)⌊k/2⌋

4k si k est pair
.

Montrer que le premier joueur (qui joue aux indices impairs) a une stratégie gagnante.
c) Des graphes arbitraires sur N

Considérons la bijection δ de N dans ∆− = {(i, j) ∈ N∗ | j < i}, définie par l’énumération :

(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), . . .

À l’aide de cette bijection, on peut interpréter toute suite de {0, 1}N comme une suite de {0, 1}∆− , qui elle même peut s’interpréter
comme la donnée d’un graphe non orienté sans boucles sur l’ensemble des sommets N.
En pratique les joueurs choisissent tour à tour soit 0 soit 1 et ces choix correspondent à l’existence d’une arête dans le graphe. On
choisit d’abord si on relie 1 et 0 par une arête, puis 2 et 0, puis 2 et 1, puis 3 et 0, etc.
Pour i > j, on note i → j si uδ−1((i,j)) = 1. Pour i, j ∈ N, on note i ↔ j si i > j et uδ−1((i,j)) = 1 ou i < j et uδ−1((j,i)) = 1.

Chemins
On note S+ l’ensemble des suites pour lesquelles le graphe contient des chemins arbitrairement longs et S∗ l’ensemble des suites pour
lesquelles le graphe contient un chemin de longueur infinie.
L’existence d’un chemin de longueur k s’écrit Sk =

⋃
x1<...<xk

(x1 ↔ x2 et x2 ↔ x3 et . . . et xk−1 ↔ xk). L’existence de chemins
arbitrairement longs est S+ =

⋃
k∈N∗ Sk .

Propriété L’ensemble S∗ ne peut pas se construire à l’aide de réunions et d’intersections dénombrables des ensembles élémen-
taires Sn,k .

Exercice Montrer que le premier joueur a une stratégie gagnante pour S∗.
§. Le second joueur gagne, en donnant un successeur pair à chaque sommet pair. ¶. le premier joueur gagne, en jouant n’importe quel premier coup, et toujours le
signe opposé du coup du joueur précédent



Cliques

Exemple L’ensemble des suites pour lesquelles le graphe construit contient un triangle est S =
⋃

x,y,z∈N

(
z ↔ y et y ↔ x et z ↔ x

)
.

Exercice Lequel des deux joueurs a une stratégie gagnante?
On dit que K ⊂ N forme une clique dans le graphe si ∀i, j ∈ K, i ̸= j ⇒ i ↔ j.
Enfin, on peut considérer SK l’ensemble des suites pour lesquelles le graphe admet une clique infinie.
Exercice ⋆ Existe-t-il une stratégie gagnante pour le jeu associé à SK ?

4) Théorème de détermination de Borel et axiome de détermination
Tribu des boréliens

Définition On note B ⊂ P(NN) la tribu des boréliens, définie comme la plus petite collection de parties de NN telle que
• ∀n ∈ N, ∀k ∈ N, Sn,k ∈ B.
• ∀A ∈ B, A ∈ B
• Si (Ai)i∈N est une suite d’ensembles de B, alors

⋃
i∈N Ai ∈ B.

Remarque La stabilité par réunion dénombrable et par passage au complémentaire impliquent la stabilité par intersection dénom-
brable : si (Ai)i∈N ∈ BN alors

⋂
i∈N Ai ∈ B.

Remarque Autrement dit, les boréliens sont tous les ensembles que l’on peut construire à partir des Sn,k à l’aide de réunions et
d’intersections dénombrables.
Remarque On s’intéresse habituellement plutôt aux boréliens R, qui sont définis en remplaçant les Sn,k par les intervalles de R.

«Complexité» des ensembles boréliens
Les ensembles décrits dans les parties précédentes sont tous des boréliens (sauf S∗). On s’est nécessairement restreint à des ensembles
qui étaient «compréhensibles», il peut exister des boréliens qui font intervenir une infinité d’interversions de quantificateurs.
La complexité des boréliens est néanmoins contrôlée par le théorème d’induction transfinie suivant

Théorème Soit P(S) une propriété qui dépend d’un ensemble S ⊂ NN. Si P est vérifiée par tous les Sn,k , si P(A) ⇒ P(A) et
si ∀i ∈ N, P(Ai) ⇒ P

(⋃
i∈N Ai

)
, alors P est vérifiée par tous les boréliens.

Démonstration. Soit C l’ensemble des ensembles S tels que P(S) soit vérifiée. Alors C contient les Sn,k , est stable par complémentaire,
et est stable par réunion dénombrable, donc, par minimalité de B, C contient tous les boréliens.

Théorème de Borel

Théorème Soit S ⊂ NN un borélien. Alors le jeu JS est déterminé.

Démonstration. Non trivial.

Remarque Ce théorème ne s’applique pas à l’ensemble S∗, qui est pourtant bien déterminé.
Axiome de détermination

L’axiome de détermination (AD) est un axiome, selon lequel pour toute partie A ⊂ NN le jeu JA est déterminé.
Il a entre autres la conséquence sympathique suivante, qui permet de définir la «longueur» de toute partie de R.

Théorème Il existe une fonction λ : P(R) → R+ ∪ {+∞}, appelée mesure de Lebesgue vérifiant
• pour tout a ≤ b, λ([a, b]) = λ(]a,b[) = b − a.
• si A, B ⊂ R sont disjointes λ(A ∪ B) = λ(A) + λ(B).
• plus généralement, si (An)n∈N est une famille de parties deux à deux disjointes, λ

(⋃
n∈N An

)
=
∑

n∈N λ(An).

Remarque On peut de même définir une application «aire» sur toutes les parties de R2.

Propriété L’axiome de détermination est incompatible avec l’axiome du choix.

Démonstration. Cf la partie suivante.

Remarque Ce résultat est incompatible avec l’axiome du choix. Sous l’axiome du choix, la mesure de Lebesgue n’est pas définie sur
toutes les parties de R.
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III) Construction d’un jeu non déterminé
On va partiellement décrire comment l’axiome du choix implique l’existence d’un jeu non déterminé.

L’hypothèse du continu
Pour simplifier les notions en jeu, on supposera l’hypothèse du continu suivante, qui stipule que tout ensemble infini «strictement
plus petit» que R est dénombrable.

Axiome Soit A un ensemble. S’il existe une surjection R → A, alors A est soit fini, soit dénombrable, soit en bijection avec R.

Remarque Cette hypothèse est indépendante de la théorie ZFC, c’est-à-dire qu’il n’est ni possible de la démontrer, ni de l’infirmer.

L’ensemble des stratégies est équipotent à R

On note S l’ensemble des stratégies possibles et NN
0 l’ensemble des suites finies.

On peut voir une stratégie comme une application qui à toute suite finie de coups (les coups précédents) associe un entier (le coup
que l’on va jouer).

Proposition NN
0 est dénombrable.

Démonstration. Notons Nk l’ensemble des suites finies d’au plus k termes, dont tous les termes sont ≤ k. Alors Nk est fini, et NN
0 =⋃

k∈N Nk , donc NN
0 est dénombrable, comme réunion dénombrable de parties finies.

Comme on a identifié S à l’ensemble des fonctions NN
0 → N, la proposition précédente justifie que S est en bijection avec l’ensemble

des fonctions N → N, c’est-à-dire l’ensemble des suites.
On rappelle le théorème de Cantor-Bernstein :

Théorème S’il existe une injection A → B et une injection B → A, il existe une bijection A → B.

Proposition NN est en bijection avec R.

Démonstration. L’application R+ → NN qui à un réel associe la suite constituée de sa partie entière, suivie de la suite des termes de
son développement décimal est injective.
Réciproquement, à une suite d’entiers (un)n∈N, on peut associer le réel x ∈ [0, 1[ dont le développement décimal est constitué de u0
chiffres 1, suivis d’un 0, suivis de u1 chiffres 1, suivis d’un 0, etc. Cette association est clairement injective.

L’axiome du choix permet de bien ordonner R
On rappelle qu’un bon ordre est une relation d’ordre totale pour laquelle tout ensemble non vide admet un minimum, ou encore pour
laquelle il n’existe pas de suite infinie strictement décroissante.
Le résultat suivant est une conséquence quelque peu douteuse de l’axiome du choix (et de l’hypothèse du continu).

Théorème Il existe un bon ordre sur R tel que pour tout x ∈ R l’ensemble {y ∈ R | y ⪯ x} soit au plus dénombrable.

Démonstration. Cf feuille culturelle sur les ordinaux.

Remarque L’existence d’un bon ordre sur R nécessite l’axiome du choix. Il n’est pas possible d’en construire un de manière «explicite».
Remarque Sans l’hypothèse du continu, il faut remplacer «dénombrable» par «de cardinal strictement plus petit que R».

Parties cohérentes avec une stratégie
Étant donné une stratégie σ, on dit qu’une suite (un)n∈N (c’est-à-dire une partie du jeu) est A-cohérente avec σ s’il est possible
d’obtenir cette partie si le premier joueur suit la stratégie σ. On dit qu’elle est B-cohérente avec σ si on peut l’obtenir si le second
joueur suit la stratégie σ.
Remarque Étant donné une stratégie σ, l’ensemble des parties B-cohérentes avec σ est en bijection avec NN, puisque le choix d’une
telle partie est équivalent à la suite des coups du joueur A. En particulier, l’ensemble des parties B-cohérentes avec σ est non dénom-
brable.
Munissons l’ensemble S des stratégies d’un bon ordre pour lequel ∀σ ∈ S, {τ | τ ⪯ σ} soit au plus dénombrable. On munit également
l’ensemble des suites, NN, d’un bon ordre.
On souhaite construire un jeu non déterminé. Pour cela, on va montrer l’existence de deux ensembles disjoints A, B tels que pour tout
σ ∈ S , A contienne une suite B-cohérente avec σ et B contienne une suite A-cohérente avec σ.
(Si ces deux parties existent, alors aucune stratégie σ n’est gagnante pour le jeu associé à A)
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Construction de A, B par récursion transfinie
On va construire ces deux parties A, B petit à petit en partant de A0 = B0 = ∅ et en considérant les stratégies une à une, suivant le
bon ordre.

Lemme Soit σ une stratégie. On suppose qu’il existe deux familles (Aτ )τ≺σ, (Bτ )τ≺σ de parties de NN indexées par les stra-
tégies τ ≺ σ vérifiant

(i) ∀τ ≺ σ, Aτ ∩ Bτ = ∅
(ii) pour tout τ , les parties Aτ et Bτ sont au plus dénombrables
(iii) les deux familles sont croissantes pour l’inclusion : τ ≺ τ ′ ⇒ Aτ ⊂ Aτ ′ .
(iv) pour tout τ , Aτ contient une suite B-cohérente avec τ , et Bτ une suite A-cohérente avec τ .

Comme {τ | τ ≺ σ} est dénombrable, les parties A∗
σ =

⋃
τ≺σ Aτ et B∗

σ =
⋃

τ≺σ Bτ sont dénombrables.
Si A∗

σ contient une partie B-cohérente avec σ, on pose Aσ = A∗
σ . Sinon, comme B∗

σ est dénombrable et que l’ensemble des
parties B-cohérentes avec σ ne l’est pas on choisit une suite u B-cohérente avec σ, et on pose Aσ = A∗

σ ∪ {u}. Pour rendre ce
choix déterministe, on choisit u comme la plus petite suite n’appartenant pas à B∗

σ , pour le bon ordre sur NN choisi initialement.
De même on définit Bσ en ajoutant à B∗

σ , si nécessaire, une suite A-cohérente avec σ qui n’appartient pas à Aσ .

Proposition Il existe un unique couple de familles (Aσ)σ∈S , (Bσ)σ∈S vérifiant les propriétés (i) à (iv) ainsi que
(v) pour tout σ ∈ S , Aσ et Bσ sont obtenus en appliquant la construction du lemme précédent

Démonstration. Unicité : Soient (Aσ)σ∈S , (Bσ)σ∈S et (A′
σ)σ∈S , (B′

σ)σ∈S deux telles suites. On considère l’ensemble des σ ∈ S pour
lesquels (Aσ, Bσ) ̸= (A′

σ, B′
σ).

D’après la propriété de bon ordre, si cet ensemble était non vide, il admettrait un plus petit élément σ0, ce qui amènerait à une
contradiction.
Existence : On considère l’ensemble des σ pour lesquels il n’existe pas de telles familles (Aτ )τ⪯σ, (Bτ )τ⪯σ . À nouveau, cet ensemble,
s’il est non vide, admet un plus petit élément, que l’on note σ. D’après l’unicité, il existe des familles (Aτ )τ≺σ et (Bτ )τ≺σ qui vérifient
les hypothèses du lemme, et qui permettent de définir Aσ et Bσ , contredisant l’hypothèse.

Conclusion

Proposition Il existe un jeu non déterminé.

Démonstration. Notons A =
⋃

σ∈S Aσ et B =
⋃

σ∈S Bσ . Alors A et B sont disjoints, et le jeu associé à A est non déterminé.
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